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FIELDS OF RANDOMLY DISTRIBUTED DISLOCATIONS AND FORCE DIPOLES

IN AN INFINITE ELASTIC ANISOTROPIC MEDIUM

L A. Kunin
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A uniform mathematical repi'esentation of singularities of the stress
field of an elastic medfum is proposed. Characteristics of one-, two-
and three-dimensional distribution of dislocations and force dipoles
are introduced, and a general method of calculating the correspond-
ing stresses in an infinite elastic anisotropic medium is discussed.
The equivalence of the stress fields of dislocations and force dipoles
is demonstrated, and the application of the method is illustrated on
some simple problems of spherical and cylindrical symmetry.

1. Delta functions defined by surfaces. * Let K de-
note a fundamental function space of Euclidean space
Rj consisting of infinitely differentiable finite func-
tions @(x) of a point x (x!, %%, x*), and let L be a
certain curve, The equation

Vowyo@de=g@dL, (1.1)

L

where dL is a line element, defines on K the general-
ized function 6(L). Functions 6(S) and 6(V) for a sur-
face S and volume V are similarly defined:

§8(5) 0 () dz = § ¢ (25)dS,

foeo@ads = (o@nar, (1.2)

v

it being evident that §(V) coincides with the charac-
teristic function of the domain V. With respect to
L, S, and V, the existence of only the right sides in
(1.1) and (1.2) is assumed. It is a valid proposition
that

L
which should be understood in the sense that

Sd:ccp(z)Sé(x——xL)dL:
i

- §dL V6 (e —z1) (@) dz = {gar)dL
L
Similiarly,

é(S):Sé(xﬁxs)dS, 6(1/’)=S6(x—xv)dV.(1.4)
: 5 s
Let, for instance, L represent the axis x® and S
the plane x!x%. Then 6(L) and 6(S) may be represented

*With reference to generalized functions associated

with surfaces see also [1]. It should be pointed out,
however, that the functionals considered there differ
from the é~functions introduced below.

as the direct product of one-dimensional 6-functions
and functions identically equal to unity,

(L) = & () x 6 (2% X 1 (29,
8 (S) =1 (4, 2% X 8 (29,
We have

Vo@as={6()xs (@)t (0)detdat =1,
8
Vo(s)ydr= (10, 0)%8 (2% de® = 1.
L
Hence in this case it may be stated that
B(L)8(S) =8 (d) X 8(a2) X 8(aY) =9 (z). (1.5)

It is easily seen that (1.5) does not depend on the
specific form of L and S provided that they intersect
at one point x = 0. Consequently, in the general case,
if L intersects S at one point x = Xy, we have

8 (L)d(S) =8 (x— =z,). (1.6)
For bounded L, S, and V,

(s(Lyds=1, (8 ydz=s,  (s(ydz=o0, 1.7)
where [, s and v denote, respectively, length, sur~
face area and volume.

If V contracts to a point x;, then

S(V)=vd(s—a), lim—8(V)=38(—g). (1.8)
V-sx,
Similar asymptotic formulas are obtained for 6(L)

and 6(S).

In addition to scalar functions we shall consider
vector ¢-functions 6(LV) and 6(SV) which, for oriented
piecewise smooth L and S, are defined by relations

Voowds = o @ =wan,

(45* =n"ds), (1.9)

LI o

S 3(S™) ¢ () da = \ @ (xg)dS”

.

where A(xy,) and n¥(xg) are, respectively, the unit
vector tangent to L and the normal to S. For bounded
Land S

Vo (L) du =1, (68" do =, (1.10)
where I¥ and s¥ are vector length and surface area.
For closed L and S, these are equal to zero. If L

and 8 intersect at one point x = Xg, then
8 (L)d(S) =+ 0 (x— 1z, (1.11)

depending on whether or not their orientations are
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matched. In fact, by deforming L and 8 one can trans-
form them into a straight line and plane with constant
unit vectors AY and n”, and reduce the problem to
(1.6). :
The derivatives of d6-~functions are determined in
the usual way, by switching the operation to the fun-
damental function, e.g., '

V8,08 0@de=—{g,, (e)dS"
pLxe

The above-introduced §-functions have a simple
geometrical interpretation. It can be shown that,
correct to the constant factor, they constitute kernels
of the corresponding averaging operators with respect
to L, Sand V.

Of considerable importance are relations of the
Stokes formula type for é-functions. Let V be a do-~
main in Ry with a piecewise smooth boundary § (with
matched orientations). Then for the tensor p (in-
dices are omitted) we have

(6,0 p(@)do = —(osp (e dV =
v

=— SP(xs) ds) = —Sé(SA)p () dz.

=4

Hence
grad 8 (V) = — 8 (8}. (1.12)
Consequently, for a closed surface S,
rot 8 (S) = 0. (1.13)

Iet now S be a two-dimensional surface with a
piecewise smooth boundary L (with matched orien-
tations). Then, from the formulas (MY is an antisym-
metric pseudotensor)

(o008, (82) p (5) do = — &0, p (2) 45, =
: S

= {p@yar =) p@as
L

there follows

1ot 8 (8) = 6 (L). (1.14)
Hence, for a closed contour
div é (L) =0, (1.15)

Now let there be given an oriented contour L and
on this contour a certain scalar or tensor function
f(x1,). Then, the corresponding 6-function with weight
f(x1) is given by

(o Wie@d={e@)f@al.  (L.16)

L

The other weighted 6-functions are determined in
a similar way. :

The derivatives of the weighted d-functions are
determined in the usual way, by switching the oper-
ation to @(x). When this cannot lead to misunder-
standing, brackets in the expressions for the weighted
6-functions will be omitted, e.g., rot** M, (xy) 6(L),

where the operator rot applies to the whole expres-
sion. It is easily seen that the following relations
hold: o

§(L") = A" (21) 8 (L),

where AY and n¥ are, respectively, the unit tangent
vector and normal,

8(S") =n*(zs) 8(5), (L.17)

2. Characteristics of the distribution of disloca-
tions and force dipoles. The Kriner equation, which
relates internal strains e with the overall density of
internal stress sources (incompatibility) n, takes

the form [2]
Rot e = 7, (2.1)

where the operator Rot is defined by

a
e, = 2.\,
( N 8@‘)
It is assumed now that the internal stresses are
produced by dislocations. If, as is usual, we introduce.

a dislocation density tensor a which satisfies the con~
dition div @ = 0, then, as is known, * for 7 we have

@.2)

Rot™® = """ 5.9,

e = roth o™,

It should be pointed out that unlike 1, in the frame-
work of the continuous model « is a directly measur-
able value.

In addition to n and o, we shall introduce a third
(perhaps most convenient in application) character-
istic of the distribution of dislocations. Let us assume
that

a = rot p, (2.3)

where i, denoting the tensor of the density of dis-
location moments, is a quantity which can be deter-
mined correct to the gradient of an arbitrary vector
field. We then have

e = rot R = rot, rot?lp”’ = Rot’*,.u”.  (2.4)

Hence it follows that 1 and, consequently, ¢ (but
not «) are not affected by the antisymmetric compo-
nent p.

Let us consider a surface S bounded by a contour
L, and let b¥ denote a constant vector. In view of
(1.15), the expression '

o (z) = b"8 (L*) (2.5)

may be regarded as the density of some distribution
of dislocations. Let us now choose an arbitrary sur-
face F intersecting L at one point, and let us con-
sider the flux o through F. Taking into account (1.11),
we find

Sa‘“‘ (wr) dF, = 0"\ O (LY Al = 4 1.

r ¥

Here the signs plus or minus are used depending

*Here and henceforth, round brackets denote sym-
metrization with respect to those indices,
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on whether or not the orinetations of L and F are
matched.

Since this flux does not depend on the choice of F
intersecting L, and since it is equal to zero if F does
not intersect L, it follows that (2.4) represents the
density corresponding to an edge dislocation with
contour L and Burgers vector b, On the other hand,
taking into account (1.14) and (1.17), we have

¥ () = rot¥,h'8 (S°) = rot’,b’n® (xg) 6 (S), (2.6)

i.e., ¢ may also be interpreted as the distribution of
dislocations over S with constant Burgers vector b”
and a surface density of moments MP¥(xg) = b1 (xg).
The quantity

W () = B8 (5°) = ™ (1) 8 (S) @.7)

is the density of dislocation moments corresponding
to the distributions (2.6) or (2.4). This may be ex-
tended to the case of an arbitrary distribution of dis-
locations. For instance, let the dislocations be dis-
tributed in some domain V., Then the most general
characteristics of the dislocation distribution are
the densities

n" (@) = M7 (av) 8 (V),

o™’ (z) = rot'. M (zv) 8 (V),

™ (2) = Rot™, M (zy) 6 (V), (2.8)
where MP¥(xy) is the volume density of dislocation
moments.

In the case of dislocations distributed over a sur-
face S or contour L, 6(V) should be replaced by 6 (S)
or 6(L) and MP¥(xy) by MP¥(xg) or MP¥(x1), i.e., by
surface or line densities of dislocation moments.

In the limiting case of an elementary dislocation,
which can be obtained, for instance, by contracting
the surface S in (2.6) to a point x4, or—what amounts
to the same—by removing the observation point to a
sufficient distance x, the expressions for y, «, and
7 become [taking into account (1. 8)]

o (z) = rot M8 (5 — x4)
M? = b's",

w (z) = M8 (. — z,), ,
. A A {eV) (2' 9)
N (x) = Rot™ M 6 (. — xo),
where s? is the vector area of S,
The distribution of force dipoles in V is similarly
characterized by

@) =—0,0" (ay)5(V), 47 (8)= Q% (xv)d (V), (2.10)

where f (x) is the density of the equivalent body force,
qPV (x) the density of dipole moments, and QPY (xy)
the volume density of dipole moments. To obtain the
distribution of dipoles on S or 1, one should replace
8(V) by 6(S) or &(L) and QP (xy) by QP¥(xg) or QP¥(x1),
i.e., by the surface or line density of dipole moments,
Let us compare the different characteristics of the
distribution of dislocations and force dipoles, assu-~
ming that the other characteristics of the medium are
constant. The dislocation density a gives full infor-
mation ahout dislocations regarded as a physical ob-

ject, but from the standpoint of internal stresses the
information it gives is useless. The dislocation "in-
compatibility™ n contains complete information about
internal stresses produced by dislocations, buf not
about dislocations as such, The moment density u con-
tains complete information about dislocations, but
correct only to Vv, where v is an arbitrary vector;

in relation to internal stresses u is defined correct

to def v + w, where w is an arbitrary antisymmetri-
cal tensor, *

The equivalent density of body forces f contains
complete information about force dipoles as sources o
of stresses but not about the dipole distribution. The
dipole moment density q contains complete information
relating to dipole distribution; however, with respect
to stresses itis defined correct toan arbitrary tensor
p which satisfies the condition p - A =0,

3. Fields of dislocations and force dipoles. It fol-
lows from (2.1) that internal stresses in the linear
theory satisfy equations

Rot €l =1, divg =0, (3.1)
where C is the elastic constant tensor. If the distri-
bution of dislocations is known and nonzero only in a
finite domain, the solution of (3.1) in an infinite me-
dium may, taking into account (2.4), be written in the
form

528 () = H,, ™ =

= rot LHI, w ot = Rot? B« n®),  (3.2)
where H¥#y,(x) is the Green's tensor for internal
stresses [6]. The operation * denotes, asusual, con-
volution.

Let us correlate the distribution of dislocations
with a moment density uP” and the distribution of
force dipoles with dual symmetrical moment density
gPY, using the relation

q” = —C%p”, w= T %L (3.3)

Then, stresses a' corresponding to ¢ satisfy equa-
tions

Rot C-1¢’ =0, dive' = — f (/=—divyg), 3.4)

whose solution may be written (with the aid of the

*It can be shown that p formally coincides with
Kroner's plastic distortion BP [2], Indenbom's resi-
dual distortion ¢° [3] and Kroupa's dislocation loop
density y [4] (see also [7]). Generally speaking,
however, all these parameters are not functions of
state and depend on the history of the medium [4}. If
therefore the discussion is confined, as in the present
case, within the framework of the elastic continuum,
it is advisable not to ascribe to y any independent
physical meaning but to regard it as a tensor poten-
tial of the dislocation density «.
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Green's stress tensor of the theory of elasticity) in
the form

o™ (2) = G*F x f°. (3.5)

Equating (3.4) to (3.1) leads directly to an important
relation:

o'=0¢ —qg=0 +Cp. (3.6)

In other words, each problem of the (linear) con-
tinuous theory of dislocations for an infinite medium
with a given moment density y can be unambiguously
correlated with a problem of the classical theory of
elasticity with a dual density of force dipole moments
q, the corresponding stresses being related by (3.6),
which were first written in explicit form (for an iso-
tropic medium) in [4].

If 3.5) is transformed (faking into account (3.3)) for
o', we obtain an expression for the displacement uy
corresponding to the force dipole density

uy (2) = Gk oy = Upp % 7, 3.7)

where Uy, is the Green's displacement tensor of the
theory of elasticity.

Since inthe region, in which g = 0, the stress ¢
coincides with ¢!, in this (and only in this) region u
may be regarded as a, generally speaking, nonunique
vector potential, in terms of which & and ¢ are (lo-
cally expressed by the usual formulas. With this res-
ervation, u in this region may be interpreted as a
displacement field produced by a given dislocation
distribution. '

Let us now consider some more important cases
of the distribution of dislocations and dual moments
and the corresponding stiress fields.

Let MPY(xg) be the surface density of dislocations
distributed on a surface S with contour L, and let
QPY(xg) denote the dual surface density of dipole mo-
ments. Then for the stresses we have

6% = —G™, . % Q% (25) 8(S) =

- \ G*, ., (z —zg) 0 (xs)dS, 3.8)
S

&% — ROt?“fFVHc.lr?).p, * M* (25) 8 (5)=

- ERoL?%,vH?‘?,_P (z — z5) M (z5) dS . @.9)

In accordance with (3.6) their difference is equal to
QPY (xg) 6 (S), i.e., to a singularity concentrated on
S.

¥ MY (xg) = b¥n? (xg), and, consequently, uP¥ co-
incides with (2. 7), this distribution corresponds fo an
edge dislocation with density (2.5). From (3.2) it fol-

lows that the stress field is in the form!
6 = H®,, x1ot™ b,8 (ILPy=

=b, 51{?%%, (@ —ar)e™® dL¥ (3.10)

It has singularities only on the contour L. In con-
trast, the dual moment stress field

5% = p,Cre SG?‘L,V (x — xg) dS. @.11)

5

has a singularity on S; it must not be represented in
the form of an integral over L.

Substituting (2.7) in (3.7), we find for an edge dis-
location

s, = IJVSGYE‘A (@ — z5)dS, . 3.12)

For an isotropic medium, this formula becomes the
Burgers formula, which is usually regarded as an ex-
pression for the displacements of an edge dislocation.
{(More accurately, they should be regarded as dis-
placements corresponding to the dual density of force
dipoles distributed on S, )

Let us now consider dislocations distributed in
domain V with a boundary S and a constant volume
moment density MPY (xy). The dislocation density, .
taking into account (1.12), may be represented in the
form?

oM (z) = rot’pM®8 (V) = e**" M '8 (S.), (3.13)
i. e., this distribution is exactly equivalent to the cor-
responding distribution of uncompensated dislocations
on S, and stresses inside and outside S are given by
(3.9). It should be pointed out that if q or pu satisfy

conditions div g = 0 or Rot i = 0, then in these cases,
respectively, 0= —q, o'=0o0ro=0, ¢g'=q.

4. Problems of spherical and cylindrical symmetry. To illustrate
the use of the general relations, we shall analyze some simple prob-
lems which can be solved by a direct method. *

The case of spherical symmetry will be discussed first. Let the
domain V be a sphere bounded by a spherical surface S of radius R.

It can easily be seen that in spherical coordinates 1, #, ¢

S =0(R—r), 8(S5)=8(r —R), @.1)

where 6(r) = 1 forr> 0 and 6(r) = 0 forr < 0.

TA representation of o in terms of an integral over
L was obtained for an isotropic medium by Peach and
Koehler [10].

¢ This case corresponds to the problem of an in-
clusion analyzed by J. Eshelby [9].

The more general problem of an ellipsoidal inclusion is analyzed
in {9].
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For the sake of simplicity we shall consider only tensors with non-
zero components Ay = Ap, Agg = Apy = Ag. Then, the components
of the dislocation incompatibility n(r) given by (2.4) will, in spherical
coordinates, be written in the form [10]

2 1 1
N, = 7[»’8 (kg — }"r)]' g = 7 llrpg)” —py1 (4.2)

It can readily be verified that the condition divn = 0, or

n, 257, — 1) = 0 (4.3)

is identically satisfied. Consequently, 1 has one significant component
7r. in terms of which ng may be expressed with.the aid of (4. 3).

In our case the set of equations (3.1) for the internal stresses for an
isotropic medium assumes the form (A, ¢t are Lamé coefficients)

, 2

5, 47 (9, ~35) =0,

Gy =he, +2(h +p)eg. (44

2 2
e+ e —e)=mn,
o = (A + 2p) e, - 2hey,
Let there be on a sphere S a distribution of dislocations with Burgers

vector oriented along the radius and equal to b = const. Then from the
general formula

pfY (z) = b”°n°8 (S), (4.5)
taking into account (4.1), we find for the moment density
#, = bd(r — R). pg =0. (4.6)

Substituting in (4.2), we obtain an expression for the significant
component

2
M, =— g d(r—R), (4.7

The solution of (4.4) is in the form

Au(3h42n) b ne
G,ZHT((T_:%JTL)‘R-[G(H~A+Te(r—R)-J.

Ap A4+ 2p) b [ RS
sszw—?[NG(R—r)—‘Z—rT_;G(r—R)]. (4.8)

A natural interpretation of this problem is as follows. Into a
spherical cavity of radius R a sphere of the same material is placed
with a radial clearance (or tightness) b, and the two parts are welded
together. If instead of welding a force double layer is applied at the
interface, then (in accordance with (3.6)) the corresponding stresses
will differ by the dual moment density

gr=—(+E2) b8(r—R), gy —=—AbS(r — R),(4.9)

Another interpretation can be formulated if it is taken into account
that a temperature distribution following an arbitrary law T(X) corres-
ponds to an incompatibility [2]

M () = Rot**, 1T () 6, (4.10)
where y is the thermal expansion coefficient. Assuming T(r) =
= T@(R — 1), Ty = const, we find
2T
M, = — YR"a(r_m. (4.11)

Comparison with (4.7) leads to a conclusion that the temperature
distribution is exactly equivalent to the distribution of dislocations
with Burgers vector b = yTyR.

As R=> 0, the limiting form of a (single) spherical dislocation is
a point source with densities (space §(x) corresponds to (2 m1¢)~18(r)).

_8(n) , 5(r)

Br==gmmi s He=0; N == "gm (4.12)

L2u i Lo 8(r)
S el GRS

I+ %(%Jr 4p) E(’l}.m.m)

[

b (’113.('4. 14)

72

p G ‘
T o) [_(37» ) T — 3 B =)

%y

Now let
M, = — af) (R —r) (@ = const), (4.15)

This incompatibility corresponds, for instance, to a temperature
distribution

r2 aR?
T(r):T(,(i—-m—>e(R—r), To=-7r« (416
Solution of the equations for the stresses gives
(Grd2m) T QRS
cr:*%mat(alﬂ—&?)(i(l?—r)—}— 5 e(r—R)]

3 2 Ro
Gy = ———*;5(“ 125;— a [(5132 —8r)0(R—r)— 5 6(r — R)}. *4.17)
In conclusion, let us consider the distribution of dislocations on
the surface of a cylinder of radius p = R, with Burgers vector b = const
oriented along p. The corresponding expressions for nonzero com-
ponents g and n are in the form

b
Be=W—R)  m=— 8=, (4.1
2p (A b R?
sp=2EER ot p)+ S0 o)),

o (i b R
= BEL L lotn— = 0o (4.19)

As R— 0 we obtain at the limit a linear source

8 2 8
o = =5 e (4-20)
RO+ p) [260e) | S(p)
w=wGo [ )
_ b4 120(p)  8(p)
O (G e 2 | 20
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